© by Springer-Verlag 1989

Stereochemie und ¹H-NMR-Spektren einiger vom Pentaerythrit abgeleiteten Spiro-1,3-dioxane

Sorin Mager^{1, *}, Mihai Horn¹, Ion Grosu¹ und Mircea Bogdan²

- ¹ Fakultät für Technologische Chemie, Universität Cluj-Napoca, Rumänien
- ² Institut für Isotopische und Molekulare Technologie, Cluj-Napoca, Rumänien

Stereochemistry and ¹H-NMR Spectra of Some Spiro-1,3-dioxanes Obtained from Pentaerythritol

Summary. Mono- and trispiro-1,3-dioxanes with mobile, fixed and "semimobile" structures were obtained by the condensation reaction of pentaerythritol with aldehydes and symmetrical or unsymmetrical ketones. The conformational analysis of the obtained compounds was undertaken by means of 1 H-NMR spectroscopy. The spiro-1,3-dioxanes obtained with aldehydes or nonsymmetrical ketones represent fixed ("anancomeric") structures. Ketalisation with 4-t-butyl-cyclohexanone leads to a "semimobile" structure of a trispiro-1,3-dioxane in which the two marginal cyclohexanic rings are fixed, while the two middle ones are mobile, continuously flipping at room temperature. The solvent effect on the NMR spectra is also discussed. Utilisation of benzene- d_6 makes it possible to interpret some of the complex spectra with superposed signals on the basis of the aromatic solvent induced shift (ASIS).

Keywords. Spiro-1,3-dioxanes; Pentaerythritol (a)ketals; Conformational analysis; Aromatic solvent induced shift — ASIS.

Einleitung

Im Rahmen unserer Arbeiten [1—5] über NMR-Spektroskopie-gestützte Konformationsanalyse von 1,3-Dioxanen wurden, ausgehend von Pentaerythrit, Spiro-1,3-dioxane erhalten und untersucht.

Durch die Acetalisierung von Aldehyden und Ketonen mit Pentaerythrit synthetisierten wir Spiro-1,3-dioxane (Gl. (1)), d. h. 3,9-substituierte 2,4,8,10-Tetra-oxaspiro[5,5]undecane (2, 3, 6—12).

HO—
$$CH_2$$
 CH_2 — OH R' (H) R' O — CH_2 CH_2 — O R' (H) R' O — CH_2 CH_2 — O R' (H) R' O — CH_2 CH_2 — O R' (H)

2, 3, 6—12 (1)

736 S. Mager et al.

Ergebnisse und Diskussion

Die mit Aceton und Benzophenon erhaltenen symmetrischen Verbindungen 2 und 3 weisen für das Konformationsgleichgewicht (Gl. 2) $\triangle G^{\circ} = O$ für die Konformationsenergie auf und sind bei Raumtemperatur konformativ flexible Verbindungen.

Die bei Raumtemperatur aufgezeichneten $^1\text{H-NMR-Spektren}$ weisen für Verbindung **2** je ein zeitlich gemitteltes Signal für die 12 äquivalenten Protonen der CH₃-Gruppe bei $\delta = 1.40$ ppm (CDCl₃) bzw. 1.16 ppm (C₆D₆) und die acht Protonen der C¹-, C⁵-, C¹- und C¹¹-Atome der 1,3-Dioxanringe bei $\delta = 3.73$ ppm (CDCl₃) bzw. 3.40 ppm (C₆D₆) auf.

Für 3 beträgt die chemische Verschiebung dieser acht Protonen der Dioxanringe $\delta = 3.85$ ppm (CDCl₃) bzw. 3.66 ppm (C₆D₆).

Durch Kondensieren von Cyclohexanonen mit Pentaerythrit (Gl. (3)) erhält man Trispirane (4, 5).

HO—
$$CH_2$$
 CH_2 — OH CH_2 — CH_2 CH_2 — CH_2 CH_3 — OH CH_3 — C

$$CH_{2}-CH_{2} \qquad O-CH_{2} \qquad CH_{2}-O \qquad CH_{2}-CH_{2}$$

$$CH_{2}-CH_{2} \qquad O-CH_{2} \qquad CH_{2}-O \qquad CH_{2}-CH_{2}$$

$$CH_{2}-CH_{2} \qquad O-CH_{2} \qquad CH_{2}-O \qquad CH_{2}-CH_{2}$$

$$CH_{2}-CH_{2} \qquad O-CH_{2} \qquad O-CH_{2$$

Das Trispiran 4 mit dem Gerüst eines 7,11,18,21-Tetraoxatrispiro-[5.2.2.5.2.2]heneicosans ist, analog zu 2 und 3, ein Molekül mit flexibler Geometrie bei Raumtemperatur. Im 1 H-NMR-Spektrum weisen die acht äquatorialen und axialen Protone der C^{8} -, C^{10} -, C^{19} - und C^{20} -Atome ein gemitteltes Signal bei $\delta = 3.61$ ppm (CDCl₃) auf, als Folge der konformativen Flexibilität aller vier Ringe des Trispirans.

Ein Sonderfall stellt das aus Pentaerythrit und 4-*tert*.-Butylcyclohexanon erhaltene Trispiran 5 dar. Bei diesem "halbflexiblen" Molekül sind die seitlichen Ringe I und IV konformativ starr (*tert*.-Butyl-Substituent als fixierende Gruppe), während die zentralen 1,3-Dioxanringe II, III konformativ flexibel sind. Demzufolge sind im ¹H-NMR-Spektrum zwei gemittelte Signale für die vier äquatorialen und axialen Protonen der C⁸-, C¹⁰-, C¹⁹- und C²⁰-Atome nachzuweisen (Abb. 1).

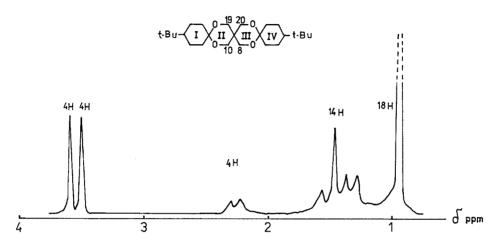
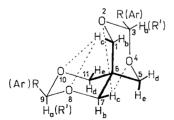


Abb. 1. ¹H-NMR-Spektrum von 5 in C₆D₆

Abb. 2. Konformationsgleichgewicht für 5

738 S. Mager et al.


Aus der Analyse der vier Konformationen (Dreidingmodelle) des Konformationsgleichgewichtes aus Abb. 2 (a—d) geht hervor, daß die äquatorialen Protonen von C¹⁰ und C²⁰, C¹⁹ und C²⁰, C⁸ und C¹⁹ sowie C⁸ und C¹⁰ abwechselnd der entschirmenden Wirkung der vier Sauerstoffatome O⁷, O¹¹, O¹⁸ und O²¹ ausgesetzt sind.

Gleichzeitig befinden sich die äquatorialen Protonen von C^8 und C^{19} , C^8 und C^{10} , C^{10} und C^{20} , sowie C^{19} und C^{20} abwechselnd in einer von den Sauerstoffatomen unbeeinflußten Umgebung. Für jede Konformation ergeben sich folglich zwei nichtäquivalente äquatoriale Protonen. Nachdem für Konformationsgleichgewichte mit der Konformationsenergie Δ $G^\circ = O$ bei Raumtemperatur äquatoriale und axiale Protonen rasch austauschen, kann man oberhalb der Koaleszenztemperatur äquatoriale und axiale Protonen im NMR-Spektrum nicht getrennt nachweisen. Es ergeben sich dementsprechend für $\mathbf{5}$ bei Raumtemperatur nur zwei Signale im 1 H-NMR-Spektrum für die Protonen von C^8 , C^{10} , C^{19} und C^{20} , die sich in der chemischen Verschiebung um den Wert Δ δ = 0.07 ppm in CDCl₃ bzw. 0.09 ppm in C_6D_6 unterscheiden.

Die mit aliphatischen (6, 7) und aromatischen (8) Aldehyden erhaltenen Spiro-1,3-dioxane besitzen eine fixierte Geometrie, wobei die Wasserstoffatome von C^3 und C^9 eine axiale Orientierung einnehmen. Als Folge der starren Sesselkonformation der Dioxanringe besitzen die C^1 -, C^5 -, C^7 - und C^{11} -Atome zwei Paare nichtäquivalenter äquatorialer Protonen H_c und H_e (Abb. 3).

Die beiden äquatorialen Protonen H_c sind der entschirmenden Wirkung der einsamen Elektronenpaare der vier Sauerstoffatome ausgesetzt, wie dies, stellvertretend für Verbindungen 6—8, am Beispiel des Spektrums von Verbindung 7 ersichtlich ist* (Abb. 4).

Der Unterschied in der chemischen Verschiebung zwischen H_c und H_b ist ungewöhnlich groß (\triangle $\delta_{b,\ c}=1.04\,\mathrm{ppm}$ in CDCl $_3$ bzw. 1.51 ppm in C_6D_6). Infolgedessen nähert sich das H_bH_c -Spinsystem einem AX-System (\triangle $\nu/J=7.8$ in CDCl $_3$ bzw. 11.7 in C_6D_6), während das H_dH_e -System ein typisches AB-Kopplungsmuster ergibt (\triangle $\nu/J=1.90$ in CDCl $_3$ bzw. 3.20 in C_6D_6). Die durch die räumliche Nachbarschaft der beiden Sauerstoffatome O^2 und O^4 bzw. O^8 und O^{10} bedingte Entschirmung von H_c ist viel größer als jene des unmittelbar an C^9 (3) gebundenen Protons H_a des Fragments O^8 O^8 O^{10} bzw. O^2 O^2 O^4 .

6 R=CH₃; 7 R=(CH₃),CH;**8** Ar=C₆H₅ 9 R=CH₃, R'=C₆H₅:10 R=C₆H₅, R'=CH₃ 11 R=(CH₄),CH, R'=CH₄12R=(CH₄),C, R'=CH₃

Abb. 3. Deshielding-Effekt durch die Ringsauerstoffatome der H_c -Protonen

^{*} Die folgende Diskussion bezieht sich desgleichen auf Verbindung 7

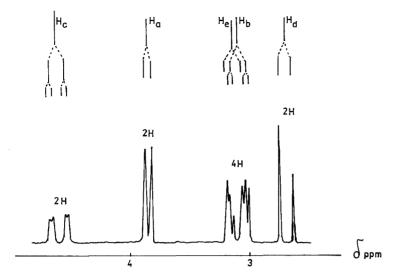
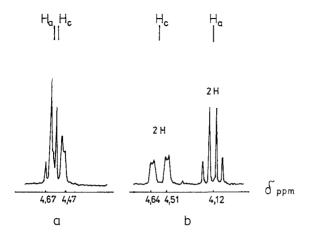


Abb. 4. ¹H-NMR-Teilspektrum von 7 in C₆D₆

Nur für Verbindung 8 ist H_a entschirmter als H_c, zweifellos als Folge der entschirmenden Wirkung der benachbarten Phenyl-Gruppe.

In den ¹H-NMR-Spektren der mit aliphatischen Aldehyden erhaltenen Spirodioxane (6, 7) [6] ist eine zusätzliche Kopplung über vier Bindungen zwischen H_c und H_e zu bemerken (Abb. 4), deren Kopplungskonstante ⁴ $J_{c, e} = 2.30$ Hz beträgt. Diese "long range"-Kopplung ist eine Folge der "W"-förmigen Anordnung der Bindungen des Fragments H_c — C^1 — C^6 — C^5 — H_e (oder H_c — C^7 — C^6 — C^{11} — H_e , Abb. 3).

Durch Spin-Entkopplung konnte die H_c/H_e-Kopplung bestätigt werden. Durch Einstrahlen der Resonanzfrequenz für H_c wird die Linienaufspaltung der Signale des Protons H_e aufgehoben.


In dem aus Benzaldehyd erhaltenen Spiran 8 konnte in CDCl₃-Lösung diese Kopplung nicht beobachtet werden, weil die Signale von H_b und H_e zusammenfallen.

Der spezifische Lösungsmittel-Effekt des Benzols erlaubt es jedoch, eine solche Kopplung nachzuweisen. Der Unterschied in der chemischen Verschiebung zwischen den axialen und äquatorialen Protonen wächst von 1.05 ppm in CDCl₃ auf 1.62 ppm in C_6D_6 für H_b und H_c , bzw. von 0.21 ppm auf 0.33 ppm für H_d und H_e . Von Bedeutung ist hier die Möglichkeit der klaren Differenzierung der Resonanzsignale von H_b und H_e (\triangle δ = 0.08 ppm in C_6D_6 im Vergleich zu 0.01 ppm in CDCl₃).

Diese weitreichende H_c/H_e -Kopplung kann auch für $\bf 6$ nur in Benzol einwandfrei bestimmt werden. So wird in C_6D_6 -Lösung das Quartett des Protons H_a diamagnetisch verschoben (Abb. 5 b) und ermöglicht die Trennung der in $CDCl_3$ -Lösung überlappten Resonanzlinien von H_a und H_c (Abb. 5 a).

Die aus unsymmetrischen aliphatischen und arylaliphatischen Ketonen erhaltenen Spirane 9—12 besitzen desgleichen eine fixierte Geometrie, wobei die räumlich weniger sperrige Gruppe (CH₃) eine axiale Orientierung an C³⁽⁹⁾ einnimmt. Eine Ausnahme bildet 9 mit axialer Phenyl-Gruppe. In dieser begünstigten "axial-senkrechten" Orientierung des Phenyl-Rings kommt es zu keiner sterischen Wechsel-

740 S. Mager et al.

Abb. 5. H_a , H_c -Teilspektrum von 6 in $CDCl_3$ (a) und C_6D_6 (b)

wirkung zwischen den *ortho*-Wasserstoffatomen der C_6H_5 -Gruppe und den axialen H_bH_d -Wasserstoffatomen der 1,3-Dioxanringe [7]. In CDCl₃-Lösung können für 9 die Protonen H_d und H_e im 1H -NMR-Spektrum praktisch nicht unterschieden werden. Der Lösungsmittel-Effekt des aromatischen Solvens macht eine eindeutige Zuordnung der Signale möglich ($\triangle \delta_{d,e} = 0.27$ ppm in C_6D_6). Auch bei der Interpretation des H_dH_e -Teilspektrums von Verbindungen 10 und 11 erweist sich der Solvens-Effekt des Benzols als eine wesentliche Hilfe.

Die spektralen Parameter des in CDCl₃-Lösung als Singulett erscheinenden AB-Systems von H_d , H_e können in C_6D_6 -Lösung problemlos bestimmt werden, wobei $\Delta \delta_{d, e} = 0.07$ ppm für 10 bzw. 0.08 ppm für 11 beträgt.

Alle diese Beispiele dokumentieren die Nützlichkeit des aromatischen Solvens-Effektes (Aromatic Solvent Induced Shifts — ASIS [8, 9]) bei der Spektrenanalyse von 1,3-Dioxanderivaten [5, 10].

Experimenteller Teil

Schmelzpunkte sind nicht korrigiert. Die Elementaranalysen wurden im Institut für Chemie, Cluj-Napoca, angefertigt. 90-MHz-¹H-NMR-Spektren wurden mit einem Bruker-SXP-4/100-Gerät mit *HDMS* als interner Standard in CDCl₃ und C₆D₆-Lösung erhalten.

Von den untersuchten Verbindungen wurden 2 [11], 3 [12], 4 [16], 6 [13], 7 [13] und 8 [14, 15] entsprechend den Literaturvorschriften dargestellt. Alle anderen Verbindungen wurden nach folgender allgemeiner Arbeitsvorschrift hergestellt: 0.1 mol Keton werden mit 0.05 mol Pentaerythrit und 0.1 g p-Toluolsulfonsäure in 150 ml Benzol am Wasserabscheider unter Rückfluß und magnetischem Rühren erhitzt, bis sich kein Wasser mehr abscheidet. Nach dem Abkühlen wird mit 0.5 g feingepulvertem wasserfreiem Natriumacetat neutralisiert, filtriert und die Benzolschicht zweimal mit je 50 ml Wasser gewaschen und über Na₂SO₄ getrocknet. Der nach dem Verdampfen des Lösungsmittels erhaltene Rückstand wurde aus Ethanol umkristallisiert.

```
3,3,9,9-Tetramethyl-2,4,8,10-tetraoxaspiro[5,5]undecan (2) [11] 

^{1}H-NMR (CDCl<sub>3</sub>/C<sub>6</sub>D<sub>6</sub>): \delta = 3.73/3.40 (s, 8 H, —CH<sub>2</sub>—), 1.40/1.16 (s, 12 H, CH<sub>3</sub>). 

3,3,9,9-Tetraphenyl-2,4,8,10-tetraoxaspiro[5,5]undecan (3) [12]
```

¹H-NMR (CDCl₃/C₆D₆): $\delta = 7.51 - 7.15/7.85 - 7.11$ (m, 20 H, Ph), 3.85/3.66 (s, 8 H, --CH₂--).

7,11,18,21-Tetraoxatrispiro[5,2,2,5,2,2]heneicosan (4) [16]

¹H-NMR (CDCl₃/C₆D₆): $\delta = 3.61/3.41$ (s, 8 H, —CH₂—), 1.85—1.18/1.48—1.24 (m, 20 H, —CH₂—).

3.15-Ditertbutyl-7.11.18.21-tetraoxatrispiro[5,2,2,5,2,2]heneicosan (5)

Farblose Kristalle, Schmp. 189 °C (aus Ethanol). 1 H-NMR (CDCl₃/C₆D₆): $\delta = 3.82/3.31$ (s, 4 H, 8-CH₂, 10-CH₂, 19-CH₂, 20-CH₂), 3.75/3.22 (s, 4 H, 8-CH₂, 10-CH₂, 19-CH₂, 20-CH₂), 2.50—2.06/2.10—1.50 (m, 4 H, 1-CH₂, 5-CH₂, 13-CH₂, 17-CH₂), 1.81-1.06/1.37—0.67 (m, 14 H, 2-CH₂, 3-CH₃, 4 CH₂, 14-CH₂, 15-CH, 16-CH₂), 0.53 (s, 18 H, tert Butyl). $C_{25}H_{44}O_4$ (408.62). Ber. C 73.48, H 10.85; gef. C 73.67, H 11.05.

3,9-Dimethyl-1-2,4,8,10-tetraoxaspiro[5,5]undecan (6) [13]

¹H-NMR (CDCl₃/C₆D₆): $\delta = 4.60/4.12$ (q, J = 5.78 Hz, 2 H, H_a), 4.56/4.58 (dd, J = 11.57 Hz, $^4J = 2.60$ Hz, 2 H, H_c), 3.58/2.97 (dd; J = 11.57 Hz, $^4J = 2.60$ Hz, 2 H, H_c), 3.56/3.07 (d, J = 11.57 Hz, 2 H, H_b), 3.45/2.64 (d, J = 11.57 Hz, 2 H, H_d), 1.32/1.16 (d, J = 5.78 Hz, 6 H, CH₃).

3,9-Diisopropyl-2,4,8,10-tetraoxaspiro[5,5]undecan (7) [13]

¹H-NMR (CDCl₃/C₆D₆): δ = 4.53/4.59 (dd, J = 11.57 Hz, ⁴J = 2.40 Hz, 2 H, H_c), 4.17/3.83 (d; J = 4.22 Hz, 2 H, H_a), 3.55/3.04 (dd, J = 10.61 Hz, ⁴J = 2.40 Hz, 2 H, H_e), 3.49/3.08 (d, J = 11.57 Hz, 2 H, H_b), 3.32/2.66 (d, J = 10.61 Hz, 2 H, H_d), 1.79/1.75 (dq, J = 6.70 Hz, J = 4.22 Hz, 2 H, CH), 0.91/0.88 (d, J = 6.70 Hz, 12 H, CH₃).

3,9-Diphenyl-2,4,8,10-tetraoxaspiro[5,5]undecan (8) [14, 15]

¹H-NMR (CDCl₃/C₆D₆): $\delta = 7.55$ —7.25/7.71—7.45 (m, 5 H, *Ph*), 5.41/5.20 (s, 1 H, H_a), 4.84/4.95 (dd, J = 11.08 Hz, ⁴J = 2.30 Hz, 2 H, H_e), 3.80/3.25 (dd, J = 11.08 Hz, ⁴J = 2.30 Hz, 2 H, H_e), 3.79/3.33 (d, J = 11.08 Hz, 2 H, H_b), 3.59/2.92 (d, J = 11.08 Hz, 2 H, H_d).

3,9-Dimethyl-3,9-diphenyl-2,4,8,10-tetraoxaspiro[5,5]undecan (9)

Farblose Kristalle, Schmp. 146 °C (aus Ethanol). 1 H-NMR (CDCl₃/C₆D₆): δ = 7.33/7.12 (m, 5 H, Ph), 4.44/4.58 (dd, J = 12.50 Hz, 4 J = 2.30 Hz, 2 H, H_c), 3.61/3.53 (d, J = 12.50 Hz, 2 H, H_b), 3.21/2.93 (d, J = 12.50 Hz, 2 H, H_d), 3.13/2.65 (dd, J = 12.50 Hz, 2 H, H_e), 1.50/1.46 (s, 6 H, CH₃). C₂₁H₂₄O₄ (340.42). Ber. C74.09, H7.11; gef. C73.85, H7.29.

3,9-Diethyl-3,9-dimethyl-2,4,8,10-tetraoxaspiro[*5,5*]*undecan* (**10**)

Farblose Kristalle, Schmp. 50—51 °C (aus Ethanol). 1 H-NMR (CDCl₃/C₆D₆): $\delta = 3.78/3.67$ (dd, J = 11.72 Hz, $^{4}J = 1.00$ Hz, 2 H, H_c), 3.71/3.49 (d, J = 11.72 Hz, 2 H, H_b), 3.60/3.31 (dd, J = 11.72 Hz, $^{4}J = 1.00$ Hz, 2 H, H_c), 3.60/3.24 (d, J = 11.72 Hz, 2 H, H_d), 1.64/1.55 (q, J = 7.32 Hz, 4 H, —CH₂—), 1.28/1.10 (s, 6 H, CH₃). $C_{13}H_{24}O_4$ (244.33). Ber. C63.91, H9.90; gef. C64.33, H10.17.

3,9-Dimethyl-3,9-diisopropyl-2,4,8,10-tetraoxaspiro[5,5]undecan (11)

Farblose Kristalle, Schmp. 59—60 °C (aus Ethanol). 1 H-NMR (CDCl₃/C₆D₆): δ = 3.86/3.88 (dd, J = 11.72 Hz, ^{4}J = 1.22 Hz, 2 H, H_c), 3.70/3.47 (d, J = 11.72 Hz, 2 H, H_b), 3.53/3.27 (dd, J = 10.48 Hz, ^{4}J = 1.22 Hz, 2 H, H_e), 3.53/3.19 (d, J = 10.48 Hz, 2 H, H_d), 1.93/1.85 (q, J = 6.84 Hz, 2 H, CH), 1.21/1.02 (s, 6 H, CH₃—C₃₍₉₎), 0.86/0.89 (d, J = 6.84 Hz, 12 H, CH₃). C₁₅H₂₈O₄ (272.38). Ber. C 66.14, H 10.36; gef. C 66.40, H 10.66.

3,9-Di-tert-butyl-3,9-dimethyl-2,4,8,10-tetraoxaspiro[5,5]undecan (12)

Farblose Kristalle, Schmp. 118—119 °C (aus Ethanol). 1 H-NMR (CDCl₃/C₆D₆): δ = 4.27/4.41 (dd, J = 11.70 Hz, ^{4}J = 2.27 Hz, 2 H, H_c), 3.64/3.39 (d, J = 11.70 Hz, 2 H, H_b), 3.48/2.99 (d, J = 11.70 Hz, 2 H, H_d), 3.27/2.87 (dd, J = 11.70 Hz, ^{4}J = 2.27 Hz, 2 H, H_c), 1.26/1.02 (s, 6 H, CH₃), 0.90/0.98 (s, 18 H, tert-Butyl). C₁₇H₃₂O₄ (300.44). Ber. C 67.96, H 10.74; gef. C 67.38, H 11.23.

Literatur

- [1] Mager S., Eliel E. L. (1973) Rev. Roum. Chim. 18: 1379
- [2] Mager S., Eliel E. L. (1973) Rev. Roum. Chim. 18: 2097
- [3] Binsch G., Eliel E. L., Mager S. (1973) J. Org. Chem. 38: 4079
- [4] Mager S., Hopârtean I., Horn M., Grosu I. (1979) Stud. Univ. Babeş-Bolyai, Chem. 24: 32
- [5] Mager S., Tăranu R., Horn M., Mureşan M. (1982) Monatsh. Chem. 113: 565
- [6] Lapuka L. F., Kantor E. A., Musavirov R. S., Rakhmankulov D. L. (1981) Zh. Obshch. Khim. 51: 934
- [7] Eliel E. L. (1972) Angew. Chem. 84: 779; Eliel E. L. (1972) Angew. Chem., Int. Ed. Engl. 11: 739
- [8] Laszlo P. (1967) In: Emsley J. W., Feeney J., Sutcliffe L. H. (eds.) Progress in NMR Spectroscopy, Vol. 3. Pergamon Press, Oxford, S. 231
- [9] Anderson J. E. (1965) Tetrahedron Lett.: 4713
- [10] Mager S., Horn M. (unveröffentlicht)
- [11] Orthner L. (1928) Ber. Dtsch. Chem. Ges. 61: 116
- [12] Moshchinskaya N. K., Stratienko V. T., Chekhuta O. M. (1965) Pat. UdSSR 173237; (1966) C. A. 64: 652c
- [13] Skrabal A., Zlatewa M. (1926) Z. physik. Chem. 119: 305
- [14] Nec R. (1971) Chem. Prumyse 21: 67
- [15] Read J. (1912) J. Chem. Soc. 101: 2090
- [16] Klyushnik N. P. (1964) Ukr. Khim. Zh. 30: 965

Eingegangen 12. Juli 1988. Umgearbeitet angenommen 10. Februar 1989